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Abstract

Alzheimer’s disease (AD) involves many neurobiological alterations from molecular to 

macroscopic spatial scales, but we currently lack integrative, mechanistic brain models 

characterizing how factors across different biological scales interact to cause clinical 

deterioration in a way that is subject-specific or personalized. Neurotransmitter receptors, as 

important signaling molecules and potential drug targets, are key mediators of interactions 

between many neurobiological processes altered in AD. We present a neurotransmitter receptor-

enriched multifactorial brain model, which integrates spatial distribution patterns of 15 

neurotransmitter receptors from post-mortem autoradiography with multiple in-vivo 

neuroimaging modalities (tau, amyloid-β and glucose PET, and structural, functional and arterial 

spin labeling MRI) in a personalized, generative, whole-brain formulation. Applying this data-

driven model to a heterogeneous aged population (N=423, ADNI data), we observed that 

personalized receptor-neuroimaging interactions explained about 70% (± 20%) of the across-

population variance in longitudinal changes  to the six neuroimaging modalities, and up to 39.7% 

(P<0.003, FWE-corrected) of inter-individual variability in AD cognitive deterioration via an 

axis primarily affecting executive function. Notably, based on their contribution to the clinical 

severity in AD, we found significant functional alterations to glutamatergic interactions affecting 

tau accumulation and neural activity dysfunction, and GABAergic interactions concurrently 

affecting neural activity dysfunction, amyloid and tau distributions, as well as significant 

cholinergic receptor effects on tau accumulation. Overall, GABAergic alterations had the largest 

effect on cognitive impairment (particularly executive function) in our AD cohort (N=25). 

Furthermore, we demonstrate the clinical applicability of this approach by characterizing 

subjects based on individualized ‘fingerprints’ of receptor alterations. This study introduces the 

first robust, data-driven framework for integrating several neurotransmitter receptors, multi-
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modal neuroimaging and clinical data in a flexible and interpretable brain model. It enables 

further understanding of the mechanistic neuropathological basis of neurodegenerative 

progression and heterogeneity, and constitutes a promising step towards implementing 

personalized, neurotransmitter-based treatments.
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Abbreviations: AD = Alzheimer’s disease; ADAS = Alzheimer’s Disease Assessment Scale; 

ADNI = Alzheimer’s Disease Neuroimaging Initiative; ASL = arterial spin labeling; CBF = 

cerebral blood flow; MCI = mild cognitive impairment; MMSE = Mini-Mental State 

Examination; PHS = polygenic hazard score; = re-MCM = receptor-enriched multifactorial 

causal model; ROI = region(s) of interest; SVD = singular value decomposition

Introduction

Alzheimer’s disease (AD) involves degenerative changes to several neurobiological processes 

spanning molecular to macroscopic scales, including proteinopathies,  modified gene expression, 

synaptic alterations, vascular dysregulation, hypometabolism, and structural atrophy 1. In AD, 

these processes begin decades before the manifestation of cognitive deterioration 2, with vast 

inter-patient heterogeneity in age of disease onset, spatial distribution of neuropathologies, 

progression patterns, and clinical presentation 3. Currently, there are no effective disease-

modifying treatments for AD, despite many expensive attempts 2 3. These failures may be 

attributed to: i) the use of a generalized medicine approach to treatment without considering the 

pathophysiological and clinical heterogeneity of the disease 4 5 6, ii) the focus on single disease 

factors (e.g. tau and amyloid) whereas most biological mechanisms in AD are multi-factorial 7, 

and, importantly, iii) an incomplete multi-scale understanding of how molecular and 

macroscopic factors interact to cause disease progression 8.

Recently, multi-modal neuroimaging models 9 10 have unravelled the temporal ordering of 

macroscopic structural, functional, vascular and proteinopathy changes in AD. Furthermore, 

personalized models of longitudinal neuroimaging data have been used to identify subject-

specific alterations of neurobiological processes including tau and amyloid accumulation, blood 

flow, and neural activity at rest 11. Nevertheless, such neuroimaging models lack a mechanistic 

basis in molecular and cellular processes. While these modalities may involve molecular 

imaging, such as amyloid or tau PET, their spatial resolution is limited in practice 12. Identifying 

important pathways between truly microscopic-scale variables and observable macroscopic 

neuroimaging (i.e. molecular PET and MRI) in AD would both advance the understanding of the 

underlying biology and improve the selection of therapeutic targets tailored to an individual’s 

particular disease subtype or presentation.
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One particularly relevant class of molecules is neurotransmitter receptors, which regulate a 

variety of biological processes known to be dysfunctional in neurodegeneration. As 

neurotransmitter receptors are mediators of many relevant neurobiological factors, studying them 

is critical for a complete mechanistic understanding and the potential treatment of abnormal 

brain conditions such as neurodegeneration 1. For example, dopamine receptors expressed by the 

cerebral microvasculature and glial cells appear to modulate the coupling between neural activity 

and vascular response 13, which is altered in AD 14. As an organ, the brain consumes energy 

disproportionately to its mass 15. A significant fraction of this energy expenditure is attributed to 

synaptic signalling and molecular synthesis, with approximately 37% of this associated with 

postsynaptic receptors and housekeeping processes 16. The production and degradation of 

neurotransmitter receptors is a complex, dynamic process that is regulated in response to changes 

in many variables, such as receptor activation, gene expression, and external stimuli 17. Since 

these processes are energy-intensive, changes to their concentrations are likely to indicate 

relevant biological alterations, making them a potential therapeutic target. Although it is not 

primarily considered a neurotransmitter disease, AD is associated with dysfunction in several 

important neurotransmitter receptor systems. Particularly, acetylcholine and glutamate receptors 

are implicated in essential stages of a pathological neurodegenerative cascade, including 

cholinergic hydrolysis and glutamatergic excitotoxicity 1. Neurotransmitter receptor alterations 

are also suspected of being a mechanistic pathway in healthy ageing 18. Thus, integrating 

neurotransmitter receptors with macroscopic neuroimaging data has the potential to uncover 

molecular pathways important to ageing and disease progression. However, in-vivo 

neurotransmitter receptor imaging is difficult, due to the lack of specific in-vivo radiolabels 19. 

Typically, receptor mapping has involved either post-mortem histology, or expensive positron 

emission tomography (PET) imaging for a limited set of molecules with available radionuclides. 

As such, large longitudinal in-vivo datasets for several receptors would be extremely expensive 

or technologically infeasible to collect. Consequently, alterations to neurotransmitter systems 

during disease progression are not well characterized 20.

Motivated by these concerns, we propose a whole-brain generative formulation integrating high 

resolution in vitro neurotransmitter receptor density maps and in vivo multi-modal neuroimaging. 

For the first time, this model allows a quantitative comparison of the causal role of different 

neurotransmitter receptors and neuroimaging modalities in healthy aging and neurodegeneration. 
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Specifically, we fit subject-specific generative models of neuroimaging data in an aging 

population covering the AD spectrum (N=423, ADNI data), augmented with 15 whole-brain 

neurotransmitter receptor distribution patterns. We then treat the parameters of these 

personalized models as subject-specific measures representing latent receptor-neuroimaging 

interactions, and identify multi-scale interactions that explain mechanistic variability and 

cognitive heterogeneity between AD subjects. We find that receptor density maps and their 

interactions with neuroimaging significantly improve the fit of neuroimaging models, providing 

a valid proxy for true, longitudinal in-vivo receptor imaging. Examining model parameters in AD 

patients, we found an axis of variability between receptor-imaging interactions and cognitive 

decline, primarily affecting executive function. Specifically, this  axis is influenced by predictors 

of tau distribution and resting state neural activity, concordant with recent reports in late-onset 

AD 21 22. Via this axis, mechanisms of glutamatergic, cholinergic and GABAergic receptor 

interactions correlated significantly with cognitive decline in AD. In contrast, while receptor-

imaging interactions in healthy individuals did not vary significantly with cognitive status, 

mechanisms affecting cerebral blood flow (CBF) changes and gray matter atrophy accounted for 

most of the inter-individual heterogeneity. This work represents the earliest attempt to integrate 

several neurotransmitter receptors and multi-modal neuroimaging data in a universal 

formulation, representing a notable advance towards implementing individually-tailored 

neurotransmitter-based diagnosis and treatment in neurodegeneration.

Materials and Methods

Ethics Statement

The study was conducted according to Good Clinical Practice guidelines, the Declaration of 

Helsinki, US 21CFR Part 50–Protection of Human Subjects, and Part 56–Institutional Review 

Boards, and pursuant to state and federal HIPAA regulations (adni.loni.usc.edu). Study subjects 

and/or authorized representatives gave written informed consent at the time of enrollment for 

sample collection and completed questionnaires approved by each participating site Institutional 

Review Board (IRB). The authors obtained approval from the ADNI Data Sharing and 

Publications Committee for data use and publication, see documents http://adni.loni.usc.edu/wp-

content/uploads/how_to_apply/ADNI_Data_Use_Agreement.pdf and 
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http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Manuscript_Citations.pdf, 

respectively.

Data description and processing

Study participants

This study used longitudinal data from N=423 participants (149 healthy, 151 early mild 

cognitive impairment (EMCI), 103 late mild cognitive impairment (LMCI), and 20 AD-

diagnosed subjects at baseline) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

(adni.loni.usc.edu). Demographic information is summarized in Supplementary Table S1. At 

least three different imaging modalities were acquired for each included subject (i.e. structural 

MRI, fluorodeoxyglucose PET, resting functional MRI, Arterial Spin Labeling and/or Amyloid-ß 

PET). The ADNI was launched in 2003 as a public-private partnership, led by Principal 

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial 

magnetic resonance imaging (MRI), PET, other biological markers, and clinical and 

neuropsychological assessments can be combined to measure the progression of mild cognitive 

impairment (MCI) and early Alzheimer’s disease (AD).

Structural MRI acquisition/processing

Brain structural T1-weighted 3D images were acquired for all N=423 subjects. For a detailed 

description of acquisition details, see http://adni.loni.usc.edu/methods/documents/mri-protocols/. 

All images underwent non-uniformity correction using the N3 algorithm 23. Next, they were 

segmented into grey matter, white matter and cerebrospinal fluid (CSF) probabilistic maps, using 

SPM12 (fil.ion.ucl.ac.uk/spm). Grey matter segmentations were standardized to MNI space 24 

using the DARTEL tool 25. Each map was modulated in order to preserve the total amount of 

signal/tissue. Mean grey matter density and determinant of the Jacobian (DJ) 25 values were 

calculated for the regions described in Methods: Data description and processing: Receptor 

densities and brain parcellation. For each region, obtained grey matter density and DJ values 

were statistically controlled for differences in acquisition protocols. Both measurements 

provided equivalent modeling results. All the results/figures presented in this study correspond to 

the DJ, which constitutes a robust local measure of structural atrophy.
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Fluorodeoxyglucose PET acquisition/processing

A 185 MBq (5  0.5 mCi) of [18F]-FDG was administered to each participant (N=418) and ±

brain PET imaging data were acquired approximately 20 min post-injection. All images were 

corrected using measured attenuation. Also, images were preprocessed according to four main 

steps 26: 1) dynamic co-registration (separate frames were co-registered to one another lessening 

the effects of patient motion), 2) across time averaging, 3) re-sampling and reorientation from 

native space to a standard voxel image grid space (“AC-PC” space), 4) spatial filtering to 

produce images of a uniform isotropic resolution of 8 mm FWHM, and 5) affine registration to 

the participant’s structural T1 image. Next, using the registration parameters obtained for the 

structural T1 image with nearest acquisition date, all FDG-PET images were spatially 

normalized to the MNI space 24. Regional standardized uptake value ratio (SUVR) values for the 

regions considered were calculated using the cerebellum as reference region.

Resting fMRI acquisition/processing

Resting-state functional images were obtained using an echo-planar imaging sequence on a 3.0-

Tesla Philips MRI scanner for N=127 subjects. Acquisition parameters were: 140 time points, 

repetition time (TR)=3000 ms, echo time (TE)=30 ms, flip angle=80°, number of slices=48, slice 

thickness=3.3 mm, in plane resolution=3 mm and in plane matrix=64×64. Pre-processing steps 

included: 1) motion correction, 2) slice timing correction, 3) alignment to the structural T1 

image, and 4) spatial normalization to MNI space using the registration parameters obtained for 

the structural T1 image with the nearest acquisition date, and 5) signal filtering to keep only low 

frequency fluctuations (0.01–0.08 Hz) 27. For each brain region, our model requires a local (i.e. 

intra-regional, non-network) measure of functional activity, in order to maintain mechanistic 

interpretability and to prevent data leakage of network information into local model terms 

(described further in Receptor-Enriched Multifactorial Causal Model). Due to its high 

correlation with glucose metabolism 28 and validation as an AD-sensitive metric 29 30, we 

calculated regional fractional amplitude of low-frequency fluctuation (fALFF)  31 as a measure of 

functional integrity.

Furthermore, while our model uses structural connectivity as the network along which inter-

region propagation occurs, we also calculated and used a functional connectome, as the average 
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of the absolute Pearson correlation matrices across all healthy subjects with fMRI data (N=42). 

Based on this, we compared model performance using structural and functional connectivity, 

characterizing the choice of connectivity metrics (see Multi-scale interactions involving 

neurotransmitter receptors are important to explaining multifactorial brain reorganization and 

Supplementary Fig. S8).

ASL acquisition/processing

Resting Arterial Spin Labeling (ASL) data were acquired using the Siemens product PICORE 

sequence for N=195 subjects. Acquisition parameters were: TR/TE=3400/12 ms, 

TI1/TI2=700/1900 ms, FOV=256 mm, 24 sequential 4 mm thick slices with a 25% gap between 

the adjacent slices, partial Fourier factor=6/8, bandwidth=2368 Hz/pix, and imaging 

matrix=64×64. For preprocessing details see ”UCSF ASL Perfusion Processing Methods” in 

adni.loni.usc.edu. In summary, main preprocessing steps included: 1) motion correction, 2) 

perfusion-weighted images (PWI) computation, 3) intensity scaling, 4) CBF images calculation, 

5) alignment to the structural T1 image, and 6) spatial normalization to MNI space 24 using the 

registration parameters obtained for the structural T1 image with the nearest acquisition date, and 

6) mean CBF calculation for each considered brain region.

Amyloid-ß PET acquisition/processing

A 370 MBq (10 mCi  10%) bolus injection of AV-45 was administered to each participant ±

(N=422), and 20 min continuous brain PET imaging scans were acquired approximately 50 min 

post-injection. The images were reconstructed immediately after the 20 min scan, and when 

motion artifact was detected, another 20 min continuous scan was acquired. For each individual 

PET acquisition, images were initially preprocessed according to four main steps 26: 1) dynamic 

co-registration (separate frames were co-registered to one another lessening the effects of patient 

motion), 2) across time averaging, 3) re-sampling and reorientation from native space to a 

standard voxel image grid space (“AC-PC” space), 4) spatial filtering to produce images of a 

uniform isotropic resolution of 8 mm FWHM, and 5) affine registration to the participant’s 

structural T1 image. Next, using the registration parameters obtained for the structural T1 image 

with the nearest acquisition date, all amyloid images were spatially normalized to the MNI space 
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24. Considering the cerebellum as an Aß non-specific binding reference, SUVR values for the 

regions were calculated.

Tau PET acquisition/processing

A 370 MBq/kg bolus injection of tau specific ligand 18F-AV-1451 ([F- 18] T807) was 

administered to each participant (N=238), and 30 min (6  5 min frames) brain PET imaging ×

scans were acquired starting at 75 min post-injection (N = 200). Images were preprocessed 

according to four main steps 26: 1) dynamic co-registration (separate frames were co-registered to 

one another lessening the effects of patient motion), 2) across time averaging, 3) re-sampling and 

reorientation from native space to a standard voxel image grid space (“AC-PC” space), 4) spatial 

filtering to produce images of a uniform isotropic resolution of 8mm FWHM, and 5) affine 

registration to the participant’s structural T1 image. Next, using the registration parameters 

obtained for the structural T1 image with the nearest acquisition date, all tau images were 

spatially normalized to the MNI space 24. Considering the cerebellum as a non-specific binding 

reference, SUVR values for the grey matter regions considered were calculated.

Receptor densities and brain parcellation

In-vitro quantitative receptor autoradiography was applied to measure the densities of 15 

receptors in 44 cytoarchitectonically defined cortical areas spread throughout the brain 32. These 

receptors span major neurotransmitter systems, and show significant regional variability across 

the brain. Brains were obtained through the body donor programme of the University of 

Düsseldorf. Donors (three male and one female; between 67 and 77 years of age) had no history 

of neurological or psychiatric diseases, or long-term drug treatments. Causes of death were non-

neurological in each case. Each hemisphere was sliced into 3 cm slabs, shock frozen at -40C, and 

stored at -80C.

Receptors for the neurotransmitters glutamate (AMPA, NMDA, kainate), GABA (GABA , A

GABAA-associated benzodiazepine binding sites, GABA ), acetylcholine (muscarinic M1, M2, B

M3, nicotinic α4β2), noradrenaline (α1, α2), serotonin (5-HT1 , 5-HT2), and dopamine (D1) were A

labeled according to previously published binding protocols consisting of pre-incubation, main 

incubation and rinsing steps 32. The ligands used are summarized in Supplementary Table S3. 

Receptor densities were quantified by densitometric analysis of the ensuing autoradiographs, and 
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areas were identified by cytoarchitectonic analysis in sections neigbouring those processed for 

receptor autoradiography, and which had been used for the visualization of cell bodies 33. 

A brain parcellation was then defined with the aid of the Anatomy Toolbox 34 using 44 regions 

of interest for which receptor densities were available 35. This parcellation was based on areas 

identified by cortical cytoarchitecture, as well as other cyto- and receptor-architectonically 

defined regions with receptor measurements (regions are summarized in Supplementary Table 

S4). These 44 regions were mirrored across left and right hemispheres for a total of 88 brain 

regions in our parcellation. For each receptor, regional densities were normalized using the mean 

and standard deviation across all 88 brain regions.

The structural T1 images of the Jülich 34 and Brodmann 36 brain parcellations were registered to 

the MNI ICBM152 T1 template using FSL 5.0's FLIRT affine registration tool 37, and the 

obtained transformations were used to project the corresponding parcellations to the MNI 

ICBM152 space (using nearest neighbor interpolation to conserve original parcellation values). 

In the MNI ICBM152 space, voxels corresponding to the cytoarchitectonically-defined regions 

from 35 were identified from the regions in the Anatomy Toolbox, with the remaining Brodmann 

regions (Supplementary Table S4) filled in using the Brodmann brain atlas. The resulting 

parcellation of 88 brain regions in the common template space was then used to extract whole-

brain multi-modal neuroimaging data and estimate the diffusion-based connectivity matrix, as 

described in Materials and Methods: Multimodal neuroimaging data and Materials and 

Methods: Anatomical connectivity estimation. 

Anatomical connectivity estimation

The connectivity matrix was constructed using DSI Studio (http://dsi-studio.labsolver.org). A 

group average template was constructed from a total of 1065 subjects 38. A multishell diffusion 

scheme was used, and the b-values were 990, 1985 and 2980 s/mm2. The number of diffusion 

sampling directions were 90, 90, and 90, respectively. The in-plane resolution was 1.25 mm. The 

slice thickness was 1.25 mm. The diffusion data were reconstructed in the MNI space using q-

space diffeomorphic reconstruction 39 to obtain the spin distribution function 40. A diffusion 

sampling length ratio of 2.5 was used, and the output resolution was 1 mm. The restricted 

diffusion was quantified using restricted diffusion imaging 41. A deterministic fiber tracking 
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algorithm 42 was used. A seeding region was placed at whole brain. The QA threshold was 

0.159581. The angular threshold was randomly selected from 15 degrees to 90 degrees. The step 

size was randomly selected from 0.5 voxel to 1.5 voxels. The fiber trajectories were smoothed by 

averaging the propagation direction with a percentage of the previous direction. The percentage 

was randomly selected from 0% to 95%. Tracks with length shorter than 30 or longer than 300 

mm were discarded. A total of 100000 tracts were calculated. A custom brain atlas based on 

cytoarchitectonic regions with neurotransmitter receptor data 35 was used as the brain 

parcellation, as described in Materials and Methods: Data description and processing: Receptor 

densities and brain parcellation, and the connectivity matrix was calculated by using count of 

the connecting tracks.

Multimodal neuroimaging data

After pre-processing ADNI neuroimaging data for all 6 modalities and extracting it for the 

cytoarchitectonically defined atlas described in Materials and Methods: Data description and 

processing: Receptor densities and brain parcellation, subjects lacking sufficient longitudinal or 

multimodal data were discarded. The disqualification criteria were i) fewer than 4 imaging 

modalities with data, or ii) fewer than 3 longitudinal samples for all modalities. For the 

remaining subjects, missing neuroimaging modalities at each time point with actual individual 

data were imputed using trimmed scores regression with internal PCA  43. Imputation accuracy 

was validated using 10-fold cross-validation, showing a strong capacity to recover the real data 

(correlation values: rCBF = 0.44, ramyloid = 0.60, rneural activity = 0.95, rgray matter = 0.80, rmetabolism = 

0.81, rtau = 0.71; all P<10-6). Finally, a total of 423 subjects were left with all 6 neuroimaging 

modalities with an average of 4.75 (±2.71) time points. We used the mean and variance of each 

neuroimaging modality across all regions and healthy subjects to calculate z-scores of 

neuroimaging data across all  (healthy, MCI, and AD) subjects. Please see Supplementary Tables 

S1-S2 for demographic characteristics, and Materials and Methods: Multimodal neuroimaging 

data and Supplementary Fig. S1 for a detailed flowchart of the selection and analysis of the 

participants.
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Cognitive scores

We used multiple composite scores derived from the ADNI neuropsychological battery. 

Protocols for deriving each score are described in the respective ADNI protocols documentation 

or relevant publication for executive function 44, memory 44, language 45, visuospatial 

functioning 45, mini-mental state examination (MMSE) 46, and the Alzheimer’s Disease 

Assessment Scale (ADAS11/13) 46. With an average of 7.27 ± (2.55) evaluations per subject in 

our cohort (N=423), we calculated cognitive decline as the linear best fit rate of change of each 

cognitive score with respect to examination date. Thus, for each patient, cognitive decline was 

represented by a set of 7 rates of change.

Receptor-Enriched Multifactorial Causal Model (re-MCM)

Under the framework of the multifactorial causal model (MCM) introduced in 11, we consider the 

brain as a dynamical system of anatomically-connected regions defined by interacting, 

neuroimaging-derived biological factors. These biological factors are tissue structure, neuronal 

activity, blood flow, metabolism, and the accumulation of misfolded proteins (amyloid, tau), 

quantified by structural MRI, functional MRI, ASL MRI, FDG PET, amyloid PET and tau PET, 

respectively. Each biological factor  at a particular brain region  is represented by a single 𝑚 𝑖

variable , whose rate of change is a function of i) local states of other factors, and ii) the 𝑆𝑚,𝑖

propagation of the same factor across anatomically-connected regions. Thus, in our model, 

pathological factors can propagate throughout the brain, but any direct interactions between 

factors must occur locally within a region.

In this study, for a given subject, and at each of the  brain regions, the system is 𝑁ROI = 88

defined by  state variables or factors. Each factor  represents the  neuroimaging 𝑁fac = 6 𝑆𝑚,𝑖 𝑚th

modality at the  brain region. Factor dynamics can be decomposed into local effects due to 𝑖th

factor-factor interactions and network propagation of the factor. In general, the differential 

equation describing this coupled system for a given subject is:

                                                                                    
𝑑𝑆𝑚,𝑖(𝑡)

𝑑𝑡 = 𝑓(𝐒 ∗ ,𝑖(𝑡))
Local Effects

+ 𝑔(𝐒𝑚, ∗ (𝑡),𝐶𝑖↔ ∗
Inter - region Propagation

),

(1)
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where  and  are functions that determine the effects of local multi-modal interactions and 𝑓 𝑔

propagation, respectively, and  is the net connectivity of region . Here, we extend the basic 𝐶𝑖↔ ∗ 𝑖

MCM formulation (Equation 1) to include the local effects of neurotransmitter receptors. With  𝐑

being a  matrix of spatial maps, composed of local densities  of a receptor  at a 𝑁rec × 𝑁ROI 𝑟𝑘,𝑖 𝑘

region , and   being a  vector of all receptor densities in region , we define the 𝑖 𝐑 ∗ ,𝑖 𝑁rec × 1 𝑖

general form of the receptor-enriched MCM (re-MCM) as:

                                                                               (2)
𝑑𝑆𝑚,𝑖(𝑡)

𝑑𝑡 = 𝑓(𝐒 ∗ ,𝑖(𝑡),𝐑 ∗ ,𝑖) + 𝑔(𝐒𝑚, ∗ (𝑡),𝐶𝑖↔ ∗ ).

The first term  represents the local component, which is the interaction between 𝑓(𝐒 ∗ ,𝑖(𝑡),𝐑 ∗ ,𝑖)

the factor  and all other factors in region , mediated by the local densities of receptors in that 𝑚 𝑖

region. The second term  represents the contribution due to network 𝑔(𝐒𝑚, ∗ (𝑡),𝐶𝑖↔ ∗ )

propagation of the factor , mediated by the net anatomical connectivity  of the region . 𝑚 𝐶𝑖↔ ∗ 𝑖

The functions  and  in Equation 2 define the global imaging factor dynamics, which are valid 𝑓 𝑔

for all brain regions. Thus, regional differences are due to different imaging factor states, 

receptor distributions and anatomical connectivity, but the mechanisms of their interactions, 

represented by  and , are consistent across the whole brain.𝑓 𝑔

Given the decades-long temporal scale of neurodegeneration compared to the relatively short few 

months between neuroimaging samples, we assume a locally linear, time-invariant dynamical 

system:

        (3)
𝑑𝑆𝑚

𝑖 (𝑡)
𝑑𝑡 = ∑𝑁fac

𝑛 = 1𝛼𝑛→𝑚𝑆𝑛,𝑖(𝑡) + ∑𝑁rec

𝑘 = 1𝛼𝑚
𝑘 𝑟𝑘,𝑖 + 𝛼𝑚

prop∑𝑁ROI

𝑗 = 1,𝑗 ≠ 𝑖[𝐶𝑗→𝑖𝑆𝑚,𝑗(𝑡) ― 𝐶𝑖→𝑗𝑆𝑚,𝑖(𝑡)],

where  is the directed anatomical connectivity from region  to , and  was defined by 𝐶𝑖→𝑗 𝑖 𝑗
𝑑𝑆𝑚,𝑖(𝑡)

𝑑𝑡

the local rate of change of neuroimaging data for successive longitudinal samples at times  and 𝑡′

:𝑡

                                                                                                                 (4)
𝑑𝑆𝑚,𝑖(𝑡)

𝑑𝑡 =
𝑆𝑚,𝑖(𝑡) ― 𝑆𝑚,𝑖(𝑡′)

𝑡 ― 𝑡′ .

In this work, we expand the local effect term to include i) direct factor-factor effects, ii) 

interaction terms mediated by  receptor types, and iii) direct receptor effects (Equation 𝑁rec = 15
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3) on the neuroimaging factor rate of change . The local factor effects term n Equation 3 is 
𝑑𝑆𝑚,𝑖

𝑑𝑡

now expanded:

              (5)𝛼𝑛→𝑚 = 𝛼𝑛→𝑚
0

Direct Factor - Factor Term
+ ∑𝑁rec

𝑘 𝛼𝑛→𝑚
𝑘 𝑟𝑘

𝑖
Interaction Term

.

Although the receptor maps  are constant templates with spatial but no temporal variation, their 𝐑

interaction terms add a dynamic element, as they imply a regional heterogeneity to neuroimaging 

predictors that is not directly explained by the direct receptor term in Equation 3. For instance, 

we might notice that (hypothetically) the interaction between a glutamatergic receptor and 

functional activity is a significant predictor of gray matter atrophy. Whether or not functional 

activity or the glutamatergic receptor map are significant predictors on their own, the 

significance of the interaction term would imply that the spatial distribution template of the 

glutamatergic receptor is informative when combined with functional activity.

Additionally, for propagation, we consider only symmetric connectivity  between regions  𝐶𝑗↔𝑖 𝑖

and , using a template connectivity matrix for all subjects, as described in Anatomical 𝑗

connectivity estimation, to give the propagation term

                                                                               (6)𝑝𝑚,𝑖(𝑡) = ∑𝑁ROI

𝑗 = 1,𝑗 ≠ 𝑖𝐶𝑗↔𝑖[𝑆𝑚,𝑗(𝑡) ― 𝑆𝑚,𝑖(𝑡)]. 

This reduces the net propagation of a factor  to a region  to a single propagation term. A more 𝑚 𝑖

complete treatment may consider vascular connectivity as well 11 4, as this measure may be more 

relevant for different processes (such as functional activity, CBF and metabolism, respectively). 

                       (7)
𝑑𝑆𝑚,𝑖(𝑡)

𝑑𝑡 = ∑𝑁fac

𝑛 = 1(𝛼𝑛→𝑚
0 + ∑𝑁rec

𝑘 𝛼𝑛→𝑚
𝑘 𝑟𝑘,𝑗)𝑆𝑛,𝑖(𝑡) + ∑𝑁rec

𝑘 = 1𝛼𝑚
𝑘 𝑟𝑘,𝑖 + 𝛼𝑚

prop𝑝𝑚,𝑖(𝑡)

Formulated in this way, each model contains a set of 𝑁params = 𝑁fac × (1 + 𝑁rec) + 𝑁rec

 parameters  for subject  and factor  (or 678 total parameters per subject). +1 = 113 {𝛼}𝑚
𝑥 𝑥 𝑚

Apart from the propagation term, which is specific to the imaging modality output of the model, 

all predictors are identical for the 6 neuroimaging modalities. That is, a common set of receptor 

maps, multi-modal neuroimaging states, and pseudo-personalized receptor-imaging interactions 

are used as predictors. However, based on their respective effects on each output modality, we 

obtain 678 distinct biological parameters per subject, each with a distinct mechanistic 
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interpretation (e.g. the effect of neural activity on metabolism or the effect of neural activity on 

CBF). We then perform linear regression, using the terms in Equation 7 as predictors with 

longitudinal ADNI neuroimaging samples  and receptor maps , to estimate subject- and 𝑆𝑚,𝑖(𝑡) 𝐑

modality-specific parameters  for each subject  and modality . Separate regression {𝛼}𝑚
𝑥 𝑥 𝑚

models were built for i) each of the N=423 qualifying subjects, and ii) each of the 6 

neuroimaging factors. These subjects were drawn from the ADNI dataset with at least 4 recorded 

neuroimaging modalities, and at least 3 longitudinal samples for at least one modality.

To evaluate model fit, we calculate the coefficient of determination (  for each subject. This is 𝑅2)

summarized by modalities in Fig. 2. With the data vector  with elements , and 𝐲 𝑦𝑚,𝑖,𝑡 =
𝑑𝑆𝑚,𝑖(𝑡)

𝑑𝑡

model predictions  with , the coefficient of determination is𝐲 𝑦 = 𝑦𝑚,𝑖,𝑡

                                                                                                            (8)𝑅2 = 1 ―
∑

𝑖,𝑡(𝐲𝑚,𝑖,𝑡 ― 𝐲𝑚,𝑖,𝑡)2

∑
𝑖,𝑡(𝐲𝑚,𝑖,𝑡 ―< 𝐲𝑚 > )2,

where  is the mean of neuroimaging data for a particular modality  across all brain < 𝐲𝑚 > 𝑚

regions and longitudinal samples.

Statistical analysis

Model fit

Personalized model fit quantified by the coefficient of determination (R2) was evaluated for each 

subject and neuroimaging modality. F-tests were used to compare receptor-neuroimaging (113 

parameters per modality) and neuroimaging-only (8 parameters per modality) to fitting 

neuroimaging data in each subject (F-test with p<0.05). The model fit (R2) was evaluated for 

each subjects’ neuroimaging models using 1000 iterations of randomly permuted receptor maps 

(with receptor densities shuffled across regions independently for each receptor type), and we 

calculated the p-value of the true receptor data model R2 compared to this distribution.

Biological parameters and relationship with cognition

We aimed to further clarify how the cognitive decline observed in AD progression is modulated 

by specific neurotransmitter receptor systems and their causal interactions with macroscopic 

Page 15 of 76

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain
D

ow
nloaded from

 https://academ
ic.oup.com

/brain/advance-article/doi/10.1093/brain/aw
ab375/6380944 by U

SC
 Law

 user on 28 N
ovem

ber 2021



biological factors (i.e. amyloid, tau, CBF, neural activity, glucose metabolism and gray matter 

density). As changes in several receptor densities are difficult to image in-vivo, we analyzed the 

receptor terms from our personalized re-MCM approach as a proxy for the importance of each 

particular receptor’s distribution or interactions in predicting multi-domain cognitive 

deterioration in AD. To consider the inter-subject variability in the diseased population, we used 

a combination of cognitive assessment scores as disease severity descriptors (i.e. executive 

function, memory, language, visuospatial functioning, MMSE, ADAS 11 and ADAS 13; see 

Materials and Methods: Cognitive Scores). 

We aimed to robustly identify significant and relevant re-MCM parameters that represent 

molecular-neuroimaging interactions associated with cognitive decline, using a data-driven 

multivariate cross-correlation analysis in combination with a randomized permutation test to 

ensure the statistical stability of our results. By concurrently analyzing the multivariate changes 

across all re-MCM parameters, this multidimensional analysis searched for large clusters of 

functionally related receptor-neuroimaging interaction mechanisms statistically associated with 

AD-associated cognitive changes. In other words, the SVD method used here (and its associated 

permutation test) identified the specific set of receptors and/or imaging features that were 

maximally related to cognitive decline. To this end, we selected a clinical subgroup of interest 

(either N=112 cognitively healthy subjects or N=25 AD patients from the N=423 total subjects 

with sufficient multi-modal neuroimaging data), and performed the following procedure on the 

original set of 678 re-MCM parameters and 7 rates of cognitive decline per subject (executive 

function, memory, language, visuospatial functioning, MMSE, and ADAS11/13):

1. To identify correlated axes of variation, we performed principal component analysis (PCA) 

on all 678 biological parameters separately on the healthy and AD subjects, and ranked 

parameters based on the variance explained in the first principal component (PC).

2. To relate biological parameters to cognition, we performed singular value decomposition 

(SVD) on the cross-covariance matrix between significant parameters and rates of cognitive 

decline for AD patients, after adjusting for covariates (baseline age, education and gender). 

SVD allows us to simultaneously reduce the dimensionality of the 7 cognitive assessments 

and to rank parameters by their variation with cognition. Where  is a matrix of z-scores of 𝑋
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each re-MCM parameter for this clinical subgroup and  is a matrix of the corresponding z-𝑌

scores of the rates of clinical decline, the cross-covariance matrix  is decomposed as𝐶 = 𝑋𝑌′

                                                                                                                                     (9)𝐶 = 𝑈𝑆𝑉′

where  and  are orthonormal matrices of spatial loadings for the coefficients and 𝑈 𝑉

cognitive scores, respectively, and  is a (diagonal) matrix of singular values . 𝑆 {𝑠1,…,𝑠7}

3. To evaluate the significance of SVD components, we performed permutation tests by 

shuffling the mapping between subjects’ re-MCM parameters and cognitive scores, and 

repeating SVD. To compare permuted iterations, we performed a Procrustes transformation 

to align the axes of singular components. We kept only those singular components that are 

significant ) compared to 1000 permutation iterations of SVD components.𝑝 < 0.05

4. We performed 1000 iterations of bootstrapping on the parameters , and discarded the 𝑋

parameters with non-significant 95% confidence intervals.

5. For the remaining significant re-MCM parameters and SVD components, we computed the 

variance explained per parameter. We then summed the contribution of each significant 

parameter  to each significant SVD component , weighted by the fraction of total variance 𝑗 𝑖

explained by the  component 𝑖th

                                                                                   (10)𝑟2,param,sig
𝑗 = ∑𝑁SVD,sig

𝑖
𝑈2

𝑖,𝑗

∑
𝑗𝑈

2
𝑖,𝑗

Parameter 
contribution

𝑠2
𝑖

∑
𝑗𝑠

2
𝑗
.

Singular value
contribution

Inter-subject mechanistic variability

To explore the potential clinical utility of our approach at the personalized level, we performed a 

quantitative comparison between diseased participants in terms of their inter-subject variability 

across different receptor systems. To this end, we defined individual-specific “fingerprints” of 

the alterations in receptor-modulated synergistic interactions. Specifically, for each participant i 

and receptor system r, we calculated the Mahalanobis distance of re-MCM parameters  𝐷𝑖,𝑟 𝛼𝑖,𝑟

associated with cognitive decline in our AD cohort (Fig. 4; Supplementary Table S5). This 
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distance is calculated between subject’s parameters , and the distribution of healthy subjects’ 𝛼𝑖,𝑟

parameters for receptor r, with means   and a covariate matrix 𝜇𝑖,𝑟 𝑺 ―𝟏,

 .                                                                                (11)   𝐷𝑖,𝑟 = (𝛼𝑖,𝑟 ― 𝜇𝑖,𝑟)𝑇𝑺 ―𝟏(𝛼𝑖,𝑟 ― 𝜇𝑖,𝑟)

To quantify the relationship between this summary metric of receptor alterations and specific 

cognitive domains, we performed multivariate linear regression on rates of cognitive decline 

(adjusted by age, gender, education level and APOE4 status; N=25) using the z-scores of the 

Mahalanobis distances for  the 6 receptor systems. We also estimated the explanatory importance 

of each receptor system, as the percentage improvement in model fit (R2) by including a 

particular receptor Mahalanobis distance.

Data and code availability

The three datasets used in this study are available from the ADNI database (neuroimaging and 

cognitive evaluations; http://www.adni.loni.usc.edu), the HCP database (tractography template 

for connectivity estimation; http://www.humanconnectomeproject.org/), and receptor density 

data published in 35. We anticipate that the re-MCM method will be released soon as part of our 

available and open-access, user-friendly software 47 (https://www.neuropm-lab.com/neuropm-

box.html).

Results

Capturing receptor-mediated multifactorial brain reorganization

Here, we aimed to develop a multi-scale generative brain model linking regional receptor 

densities (for 15 neurotransmitter receptors) and multimodal neuroimaging-based factors (for six 

biological variables) in a flexible, unified formulation. We aimed to use this mathematical 

framework to infer receptor alterations associated with the long-term physiological changes of 

complex brain reorganization processes (namely aging and neurodegeneration) and their 

cognitive impact. Because changes in receptor concentrations are difficult to measure in vivo, our 

receptor density maps were composed of group-averaged templates, with spatial distributions of 

receptors but no inter-individual variability or intra-individual longitudinal progression. 

Consequently, we use the predictive importance of receptor distributions in generative models of 
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abnormal neuroimaging-derived biological variables as a proxy for alterations in either receptor 

density or mechanistic interactions with other imaging-derived variables. 

We proceeded to characterize the multifactorial brain dynamics of each participant using the 

developed neurotransmitter receptor-enriched multifactorial causal model (re-MCM; Fig. 1) and 

the quality-controlled, multi-modal longitudinal neuroimaging data (described in Materials and 

Methods: Data description and processing). For each participant with sufficient longitudinal and 

multi-modal data (N=423), the re-MCM was fit for all 6 neuroimaging modalities, to obtain 

receptor-imaging biological parameters reflecting local factor-factor interactions mediated by 

neurotransmitter receptor distributions (e.g. amyloid-tau interactions modulated by NMDA 

receptors) and the spreading of effects via anatomical networks (e.g. amyloid and tau 

propagation along white matter connections). 

Multi-scale interactions involving neurotransmitter receptors are important to 

explaining multifactorial brain reorganization

Firstly, we proceeded to evaluate the ability of the re-MCM approach to fit longitudinal 

neuroimaging data with and without receptor maps and multi-scale receptors-imaging 

interactions (Fig. 2a-b). For each of the six neuroimaging modalities per subject, we calculated 

the coefficient of determination (R2) as a measure of model accuracy for explaining the real 

imaging-specific longitudinal changes. While model accuracy varied by imaging modality, we 

observed that the personalized models including receptor-neuroimaging interactions explained 

approximately 70% (  20%) of observed variance in all modalities (Fig. 2a). ±

Inter-region propagation in our model occurs along structural connectivity. While functional 

connectivity can be a better predictor of fMRI data, structural connectivity is a better measure of 

the actual physical substrate connecting brain regions. Nevertheless, to explore the effects of 

alternate connectivity measures, we repeated our modeling steps using functional connectivity in 

place of the structural connectivity derived from diffusion-MRI tractography. While the 

connectivity matrices differed, we found almost no change in model fit or parameters across 
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subjects, with a high correlation r>0.99 of model R2 (P<0.001) across all modalities 

(Supplementary Fig. S8). We attribute this to the dominance of intra-regional effects in our 

model, with many interacting local receptor and neuroimaging predictors, and also to the shared 

information in structural and functional connectivity 48.

Next, to evaluate the relevance of receptor densities and receptor-mediated interactions between 

biological factors quantified by imaging (e.g. amyloid-tau interaction modulated by GABA), we 

compared the model fit of full re-MCM models (incorporating receptor-factor interactions as 

previously described) with restricted models (using only neuroimaging predictors and network 

propagation). The models including receptor maps and receptor-imaging interactions explained, 

on average, more than twice as much of the variance in longitudinal neuroimaging changes 

(Supplementary Table S7; P<0.001 with a two-sample t-test). To account for the greater 

explanatory power of a larger model with more parameters, we quantified the improvement in 

individual neuroimaging modeling due to the receptor terms, we conducted F-tests between the 

full re-MCM formulation (Fig. 2a) and the restricted model (Fig. 2b). As hypothesized, we 

observed that the inclusion of receptor maps and multi-scale (receptor-imaging) interaction terms 

significantly improved (P<0.05) the model accuracy for 86.8%-99.0% of the subjects (Fig. 2c) 

while accounting for the additional degrees of freedom in the model with receptors. While the 

inclusion of receptors and receptor-imaging interactions improved model performance for all 

subjects and modalities, this improvement was not always significant, most notably in 13.2% of 

gray matter atrophy models (Fig. 2c). We attribute this to the use of a shared, group-averaged set 

of neurotransmitter receptors templates (further tested below). 

Having established that receptor maps and receptor-neuroimaging interactions do significantly 

improve personalized neuroimaging models, we then performed a permutation analysis on the 

receptor maps to test the informativeness compared model performance using averaged receptor 

templates to a set of null receptor maps. For each subject, the model fitting procedure was 

repeated using 1000 random permutations of the spatial receptor maps. Receptor densities were 

shuffled across regions of interest, independently for each receptor. We then compared the 

distribution of model fit (R2) using these randomly permuted data with the R2 obtained for the 

models using the true receptor templates. We observed that the significance of the improvement 

in model fitting over randomized receptor maps varied by imaging modality, for example, being 
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lower for metabolism than for neural activity (Fig. 2d). Nevertheless, the true receptor templates 

perform significantly better in approximately 80%-98% of all subjects, depending on the 

modality. The gain in model performance by imaging modality is presented in Supplementary 

Table S8, and generally fell between 15.6% ± 13.3% (p<0.0417) for glucose metabolism to 

22.3% ± 15.0% (p<0.003) for neural activity. Notably, the modalities for which true receptor 

data was the least informative (metabolism and gray matter atrophy), were also the ones for 

which augmenting the model with receptor data provided the least significant improvements 

across all subjects. Furthermore, we compared the proportion of subjects with significant 

improvements over null maps across diagnoses, shown in Supplementary Fig. S7. On average 

across modalities, 96.2% of healthy subjects’ models were significantly improved, wheras this 

was progressively lower for MCI subjects (89.4% for early MCI and 89.8% for late MCI) and 

AD patients (78.3%).

We hypothesize that accentuated aging processes and neurodegeneration may alter receptor 

densities or interaction mechanisms in each individual, requiring the biological parameters in our 

personalized models to  compensate. Identifying these specific alterations is the subject of the 

remaining subsections. 

Characterizing receptor-imaging interaction variability in healthy aging and AD

We aimed to characterize the variability in receptor-mediated brain reorganization in the studied 

healthy aging (N=112) and AD subpopulations (N=25). In the healthy population, we performed 

a principal component analysis (PCA) on all re-MCM biological parameters (678 in total) across 

the 6 neuroimaging modalities, finding that the first principal component (PC1) is able to explain 

97.3% of the group’s variance. The most variable parameters contributing to PC1 belonged to 

CBF and gray matter models (Fig. 3a). That is, if current CBF in a region becomes less important 

(relative to other re-MCM predictors) to predicting its future change, gray matter density also 

becomes less important to predicting future atrophy, whereas the current level of amyloid 

becomes more important to predicting future accumulation. These results suggest that, in the 

absence of an influential disease process (e.g. neurodegeneration), inter-individual differences in 
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the long-term brain reorganization are mechanistically driven by receptor-mediated processes 

affecting CBF and gray matter density. Most prominently, these include the CBF effects due to 

interactions between the dopaminergic D1 receptor and amyloid distribution (2.9%), the 

adrenergic α1 receptor and gray matter density (2.7%), the GABAA benzodiazepine site and 

neural activity (GABAA/BZ; 2.0%), and the GABAA receptor and gray matter density (1.8%). 

Additionally, the interaction between the glutamatergic AMPA receptor and amyloid distribution 

as a predictor of gray matter atrophy (2.3%) are also notably variable. 

In the AD group (N=25), with the presence of a neurodegenerative condition, the first PC of the 

re-MCM biological parameters only explained 26.2% of the population variability (with 

subsequent PCs explaining less than 10% each). Along this main axis of variability, inter-

individual differences are primarily due the effects of neural activity as a direct or receptor-

mediated predictor of tau accumulation (Fig. 3b; 7.9% of PC1 via the direct term, 7.3% via 

adrenergic α1receptors, 5.7% via serotonergic 5HT1A receptors, 4.0% via dopaminergic D1 

receptors, and 3.7% via cholinergic α4β2 receptors). The next subsection covers a deeper analysis 

of the AD group.

Interestingly, in the healthy subpopulation, when the individually small contributions of all 

receptor-terms for each target neuroimaging modality were summed (Fig 3c), we observed that 

the receptor mechanisms that affect CBF changes, gray matter atrophy and amyloid 

accumulation were the most variable, with GABAergic and serotonergic mechanisms 

dominating. For example, combined variability due to GABAergic (9.7% of PC1), serotonergic 

(8.7% of PC1) and adrenergic (primarily α1 receptors; 7.3% of PC1) interactions predicting CBF 

changes accounted for approximately a quarter of variability across all 6 neuroimaging 

modalities and 678 total parameters (25.7% of PC1). As seen in Fig 3b, the main sources of 

biological parameter variability in AD (Fig 3d) involved neural activity predictors of tau 

accumulation. Predictors of tau accumulation involving adrenergic (9.9% of PC1), serotonergic 

(9.6%), cholinergic (6.6%) and dopaminergic (4.7%) interactions were the most variable.
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Receptor-imaging alterations underlying cognitive deterioration in AD

To determine the receptor-neuroimaging alterations underlying multiple cognitive variations in 

AD, we performed a multivariate cross-correlation analysis between the rate of changes of the 

selected cognitive descriptors and the biological parameters across all AD subjects (Materials 

and Methods: Biological parameters and relationship with cognition). Notably, we found that 

just the first component of the identified biological parameters can explain up to 39.7% 

(P<0.004, FWE-corrected) of the inter-individual variability in AD cognitive deterioration (Figs. 

4a). Furthermore, we identified the specific cognitive domains that are correlated with receptor-

neuroimaging alterations (Fig. 4c), with executive dysfunction being the most salient cognitive 

feature with respect to receptor-neuroimaging parameters. Finally, Fig. 4d presents a detailed 

pathway of 95 receptor-imaging interactions significantly associated with cognitive decline 

based on feature bootstrapping, and their associated neuroimaging modalities mediating AD-

related symptom severity. These results show that a multi-factorial set of molecular alterations 

are relevant to cognitive decline in AD. Cumulative effects of different neuroimaging 

interactions and receptor subtypes from the same family are summarized in Fig. 5, quantified by 

the total cognitive variance explained by all parameters of the relevant category via the 

significant SVD component.

Gray matter density (2.1%) and CBF (1.5%) changes as predictors of neural activity dysfunction, 

and CBF (1.3%) and glucose metabolism (1.0%) as predictors of tau distribution were the most 

cognitively-significant pathways between imaging modalities, although tau as a predictor of 

amyloid distribution (0.7%), neural activity dysfunction (0.7%) and glucose metabolism (1.2%) 

was also significant. Overall, as predictors, biological parameters involving CBF, tau and gray 

matter density were the most significant in relation to the cognitive severity of AD. The 

neuroimaging models of neural activity dysfunction and tau accumulation were the major 

sources of cognitively-significant biological parameters. 

In terms of receptor systems, glutamatergic, GABAergic and cholinergic alterations were 

significant to cognitive decline, as summarized in Supplementary Table S6. Alterations to 

glutamatergic predictors of resting state functional activity (2.5%), GABAergic predictors of 

amyloid deposition (1.4%), and cholinergic predictors of tau distribution (1.4%) were the 

dominant receptor effects. 
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Furthermore, while the second component was borderline non-significant (p<0.051), it explained 

23.4% of the variance between model parameters and cognitive decline (r=0.89, p<10-8; 

Supplementary Fig. S10). In this axis, receptor-imaging parameters predicting neural activity 

were less prominent, with CBF and metabolism model parameters contributing more. 

Cognitively, this second component corresponded to non-executive function domains, primarily 

memory, language and visuospatial function.

As a control case, we performed an equivalent cross-correlation analysis in the healthy 

population, notably finding the first principal component relating re-MCM parameter with rates 

of cognitive decline in health to be non-significant (Supplementary Fig. S3), although the second 

principal component explaining a small amount of cognitive variance was significant (15.5% 

variance explained, p<0.02; Supplementary Fig. S4). Furthermore, we found no significant 

component in amyloid-negative healthy subjects (p>0.2 for all components). We attribute this 

effect to the lack of consistent cognitive decline in the analyzed healthy population, in contrast to 

the large variability observed for AD. 

To test the sensitivity of our findings to genetic covariates, we repeated our analyses both with 

and without APOE ε4 allele status and a polygenic hazard score (PHS) 49 as covariates in the 

SVD analysis, in addition to age, gender and education in both cases. To overcome the low 

number of AD subjects, we expanded our criteria to include MCI and AD subjects (N=177 for 

APOE status, N=161 for PHS). Importantly, we confirmed that the previously identified AD-

related significant latent variables and parameters are robust to the inclusion of APOE status and 

PHS (Supplementary Fig. S5 and S6). Finally, to further restrict our analysis to subjects on the 

amyloid-mediated AD spectrum, we repeated the SVD analysis in amyloid positive subjects with 

MCI and AD (N=52). As was the case in the initial AD group, we found one significant principal 

component (44.3% variance explained, p<0.003) with a high correlation between model 

parameters and cognitive decline (mainly executive function; r=0.76,p<0.001). The main 

receptor-imaging interactions along this axis were analogous to those in the AD group, namely 

cholinergic predictors of tau accumulation, although parameters of the neural activity model 

were less prominent in favour of predictors of metabolism (particularly for adrenergic and 

cholinergic systems; see Supplementary Fig. S9).
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Clinically-similar subjects have different underlying receptor alterations

Finally, for each participant and receptor family, we defined a summary metric quantifying how 

much receptor-based mechanisms differ from clinically healthy subjects (see Statistical analysis: 

Inter-subject mechanistic variability). For example, a given subject’s glutamatergic Mahalanobis 

distance is a combined measure of the “unhealthiness” of receptor-based interactions and spatial 

distributions involving NMDA, AMPA and kainate, while accounting for the variation of these 

mechanisms in healthy subjects.

Although a simplified summary metric, the receptor Mahalanobis distances explained a large 

proportion of cognitive variance in the AD population, with 71.4% for executive function 

(p<0.0004), 43.3% for memory (p<0.08), 18.7% for language (p<0.66), 40.1% for visuospatial 

function (p<0.10), 43.8% for MMSE (p<0.08) and 33.8% for ADAS11 (p<0.22). Figure 6a 

shows the effects of each receptor family on cognitive domains, as well as the percentage 

improvement in explaining cognitive variance due to each receptor family. We note the large 

negative effects of GABAergic alterations on executive function and the MMSE, and 

dopaminergic alterations on memory. Interestingly, cholinergic alterations showed a moderate 

positive effect and explanatory importance towards executive function. 

In Figure 6b-c, we illustrate how two AD patients with similar cognitive symptoms present 

distinct receptor alteration fingerprints, with primarily glutamatergic and cholinergic 

mechanisms respectively. Importantly, this result suggests that even subjects with identical 

clinical diagnoses present distinctive underlying spatiotemporal molecular alterations, and 

supports the use of whole-brain generative models to uncover patient-specific receptor and 

potential disease mechanisms to target clinically.
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Discussion

In this work, we have presented a personalized, whole-brain and generative multi-modal 

neuroimaging model incorporating receptor-neuroimaging interactions using in-vivo data. 

Subsequent analyses on the resulting models have allowed, for the first time, the identification of 

i) variability in receptor-neuroimaging interactions in healthy subjects and AD patients, and ii) 

specific pathways of receptor-neuroimaging interactions that are important to cognitive decline 

in AD patients. This exploratory analysis provides a bridge between molecular-level mechanisms 

and observable macroscopic neuroimaging biomarkers of healthy aging and AD, revealing which 

neurotransmitter receptor systems mediate dysfunctional interactions between neurobiological 

processes such as cerebral blood flow, amyloid and tau deposition, gray matter atrophy, neural 

activity and metabolism.

Due to the difficulty of comprehensive, personalized in vivo receptor imaging for a large cohort, 

receptor maps were not specific to each subject, but instead the averaged templates of 4 post-

mortem brain samples. Post-mortem in vitro autoradiography allowed the imaging of a large 

number of receptor types, even those without in vivo radioligands. Firstly, our work demonstrates 

that i) multi-scale interaction terms involving the spatial distributions of neurotransmitter 

receptors are highly informative to models of neuroimaging progression, and ii) even group-

averaged receptor map templates can significantly improve the personalized model fit in nearly 

all subjects when combined with personalized neuroimaging predictors. Specifically, 

incorporating receptor maps and multi-scale receptor-imaging interactions to personalized 

models with multi-modal neuroimaging predictors improves the average data variance explained 

from approximately 40% to 70% (Fig. 2a,b). This improvement is statistically significant (F-test 

with P<0.05) in almost all subjects (Fig. 2c), even after accounting for the additional predictive 

power of the larger, multi-scale models. Including only receptor maps without receptor-imaging 

interactions also resulted in a more modest yet significant improvement in the vast majority of 

subjects across all imaging modalities (Supplementary Fig. S2). This is a particularly strong 

result, validating the use of a group-averaged receptor template, given the large improvement 

and the stringent criterion accounting for additional model parameters. 
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Additionally, models using the true receptor templates perform significantly better (P<0.05 of 𝑅2

) than models using randomly permuted, null receptor maps in almost all subjects (Fig 2d; 

80.4%-98.1%, depending on the modality), although this improvement was less evident with 

disease progression (Supplementary Fig. S7). These results, along with the consistency of 

regional receptor densities across the 4 (aged but healthy) brains used to produce the templates 

compared to inter-region variability 35, support the applicability of receptor templates to a wider 

population. Receptor mapping studies across more diverse clinical groups of patients would help 

validate or augment our modeling approach. Nevertheless, given the difficulty of acquiring a 

wide variety of in-vivo molecular data, due to a limited number of appropriate radioligands, and 

the high cost of longitudinal molecular imaging, these results on model accuracy are a promising 

validation for the combination of other molecular templates (such as gene expression atlases) 

with personalized neuroimaging predictors. These “pseudo-personalized” molecular-imaging 

predictors can then be incorportated into neuroimaging models and used to infer mechanistic 

alterations in a group of subjects. If these personalized models are sufficiently accurate, as in this 

work, the weights of their biological parameters then serve as proxies for individual-specific 

alterations to receptor-mediated mechanisms. 

While interpreting these parameters, it is important to distinguish between the types of biological 

mechanisms they represent, which include (for each neuroimaging model) i) direct neuroimaging 

effects, ii) direct receptor density effects, iii) receptor-imaging interactions, iv) network 

propagation and v) offset terms representing an intrinsic rate of change for the neuroimaging 

modality. We hypothesize that ageing and neurodegeneration alter the spatial distributions of and 

functional interactions involving neurotransmitter receptors, which would lead to subject-specific 

model parameters to compensate in the absence of inter-subject variability in receptor data. Thus, 

model parameters are a proxy for alterations to spatial maps of receptors or their interactions 

with neurobiological processes (represented by direct model receptor density terms and receptor-

imaging interaction terms in the model, respectively). In our parameter analyses in Receptor-

imaging alterations underlying cognitive deterioration in AD, direct receptor density terms 

represent alterations to the spatial distribution of a particular receptor. Each interaction biological 

parameter value can be interpreted as the effect of the corresponding receptor or imaging factor 

on the brain reorganization process, as measured by neuroimaging changes, given “normal” (i.e. 

spatial mean) values of all related predictors involving the same receptor or imaging term, 
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respectively. For example, we consider the case where the interaction term between a 

glutamatergic receptor and amyloid in the CBF model is significantly related to cognitive 

decline. This implies that, under normal levels of amyloid and the glutamatergic receptor 

individually, a functional alteration in this mechanism (quantified by the re-MCM parameter 

weight) is correlated with faster cognitive deterioration.

Biological parameters were evaluated for principal axes of variability in Fig. 3 and the 

cognitively-relevant variability in Fig. 4. The former method was used to identify linear 

combinations of biological parameters that accounted for inter-individual differences in receptor 

and/or neuroimaging interaction strengths in healthy and AD subjects. On the other hand, the 

goal of the latter analysis was to identify biological parameters that were robustly correlated with 

multivariate measures of cognitive decline in AD. The purpose of these analyses was not to 

compare effects sizes between predictors, but rather to explore inter-subject differences in 

receptor-imaging interactions in relation to cognitive decline. For example, if regional amyloid 

accumulation strongly predicts changes in functional activity, but this biological parameter is 

consistent across subjects with different clinical and cognitive states, it would not be significant 

to our analysis. Rather than using clinical diagnosis, which is subject to large variability due to 

patient presentation and clinician bias, we used a combination of cognitive test scores. 

Ultimately, cognitive performance is the phenotype of interest in neurodegeneration. Our SVD 

analysis allows us to identify parameters associated with cognitive scores, rather than simply 

those with a large variability between individuals due to other causes.

Sources of variability in healthy and AD subjects (Fig. 3) reflect alterations to mechanisms of 

receptor-imaging interaction that predict the same or another imaging modality. Here, we 

observed that a single PCA component explains 97.3% of the inter-individual variability in 

healthy subjects. Along this axis, a multi-faceted combination of receptor-imaging interaction 

predictors of CBF alterations (e.g. the interaction between dopaminergic D1 receptors and 

amyloid) and gray matter atrophy (e.g. the interaction between glutamatergic AMPA receptors 

and amyloid) account for the majority of variability (Fig. 3a,c). Interestingly, there is relatively 

low variability in the biological parameters of receptor influence on neural activity, glucose 

metabolism and tau distribution in healthy individuals (Fig. 3c). In healthy subjects, the receptor-

imaging mechanisms affecting these factors are comparatively consistent, whereas the 
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mechanisms behind atrophy, CBF regulation and amyloid accumulation display more inter-

subject heterogeneity.

In contrast, the first principal component of AD subjects’ biological parameters explained only 

26.2% of the total variance, but this was dominated by neural activity as a (receptor-modulated) 

predictor of tau accumulation (as well as other neuroimaging modalities; Fig. 3b,d). Receptor 

mechanism variability was largely explained by adrenergic and serotonergic predictors, for 

example the interactions of α1 and 5HT1A receptors with neural activity to predict tau 

accumulation. As tau is primarily present in axonal microtubules, the exacerbation of tau 

pathology has been linked to enhanced neural activity 50. Conversely, tau is also believed to 

suppress and silence neural activity 22. Thus, the principal component of variability in AD 

subjects may represent variability in an activity-dependent tau accumulation via adrenergic α1, 

serotonergic 5HT1A,  dopaminergic D1, and cholinergic α4β2 receptors. This would be consistent 

with the observed mediation of tau hyperphosphorylation by adrenergic and serotonergic 

receptors in animal models 51 52.

From the inner sectors of Fig. 4d, inter-individual differences in cognitive decline are most 

correlated with biological parameters of the neural activity, tau and amyloid models, and least 

correlated with biological parameters of the CBF, gray matter density and glucose metabolism 

models. In other words, differences in receptor-imaging interactions affecting CBF changes are 

less relevant to cognitive symptom severity in AD than those affecting resting state functional 

activity. While neural activity is not a cognitively-important predictor of other neuroimaging 

modalities, many predictors of neural activity dysfunction are correlated with cognitive severity 

in AD (Fig. 5). Conversely, predictors of CBF do not vary significantly with cognition, whereas 

CBF itself is an important predictor of many other neuroimaging modalities. This may imply a 

causal ordering, with CBF alterations preceding dysfunctional activity.

The glutamatergic system is implicated in cognitive decline via its role as the major excitatory 

mediator of neural activity 53 54 55. In AD, the glutamatergic system is involved in excitotoxicity 

due to calcium ion influx via NMDA receptors 53, resulting in synaptic loss and neuronal cell 

death 54. Tau and amyloid are involved via an overactivation of NMDA receptors 56. The 

synaptic activation of NMDA receptors is linked to specific neurophysiological conditions, 

particularly activity-dependent synaptic plasticity, as well as behavioural symptoms of multiple 
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brain disorders including AD 57. In addition, AMPA receptors are involved in synaptic scaling, 

and consequently learning and memory. Reductions in AMPA receptor levels have been 

observed in mouse models of AD 58, as well as in the entorhinal cortices 59 of AD patients, with a 

differential preservation of certain subunits in the hippocampus 60, and AMPA receptor 

endocytosis has been linked to the phosphorylated tau signaling cascade 61. Thus, the established 

AD-related alterations and cognitive roles of the glutamatergic NMDA and AMPA receptors 

would be consistent with their significant modulation of resting state functional activity in 

relation to cognitive decline in AD via interactions with CBF, glucose metabolism and tau.

From the columns of Fig. 5, CBF changes are the largest neuroimaging driver of cognitively-

relevant dysfunction in other modalities, consistent with its precedence among AD imaging 

biomarkers 10. Closely coupled to neural activity, CBF is mediated by several neuronal factors, 

including vasodilatory neurotransmitters, and vascular dysregulation is implicated in the 

pathogenesis of AD 62. CBF interactions with a multitude of receptors were correlated to 

cognitive severity via amyloid, neural activity, gray matter density and tau models. This is 

consistent with the amyloid-dependent relationship of CBF to memory performance 63, and the 

link to tau pathology via gene expression alterations in AD 64. 

Furthermore, inter-individual differences in the effects of tau on other imaging modalities are 

also major contributors to AD-associated cognitive decline, as seen in Fig. 5. These include 

glutamatergic interactions affecting neural activity and amyloid accumulation, and a 

multifactorial set of receptor interactions affecting metabolism. Cognitive decline in AD is 

accompanied by changes in the role of regional tau concentration as a predictor of amyloid 

distribution, suggesting synergistic or mediation effects such as the tau axis hypothesis 65. Tau is 

believed to mediate amyloid toxicity 65, which may explain the significant role of tau as a 

predictor of amyloid accumulation (Fig. 5). Multimodal PET imaging has shown a region-

dependent relationship between tau burden and hypometabolism in AD 66. Futhermore, 

alterations to glucose metabolism in mice brains were found to lead to abnormal tau 

hyperphosphorylation 67. Along with the established neural activity dysfunction due to tau 

accumulation 68, these mechanisms are consistent with the cognitively-significant role of tau as a 

predictor of other neuroimaging modalities. 
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Along with NMDA, acetylcholine is the neurotransmitter system most associated with 

Alzheimer’s disease and its clinical treatment 69. Based on the cholinergic hypothesis, 

dysfunction in acetylcholine-producing basal forebrain regions would eventually lead to synaptic 

deafferentiation in the cortical regions to which they project 70, with cognitive implications 71. 

This is consistent with the significant role of cholinergic predictors of tau distribution, which 

appear to be more correlated with cognitive severity of AD than amyloid distribution (Fig. 5). 

Although GABAergic receptors were not initially linked to AD, recent evidence has uncovered 

disease-related alterations, contributions to pathogenesis, and a potential therapeutic role in AD 
72. The disruption of the excitatory/inhibitory balance maintained by GABAergic signaling has 

been implicated in the cognitive symptoms of AD, such as an increase in epileptic seizures 73. 

Electrophysiological activity has found a functional remodeling of GABAergic neurons in AD, 

showing reduced currents and a faster rate of desensitization 74. The presence of amyloid was 

also found to affect the expression of the α6 subunit of the GABAA receptor 72. Furthermore, a 

role for tau has been proposed in the regulation of GABAergic function and synaptic plasticity to 

maintain normal cognition 73. Additionally, it has recently been found that the administration of 

benzodiazepine in mouse brains leads to tau hyperphosphorylation 75. Such drugs potentiate 

GABAergic neurotransmission by binding to the benzodiazepine binding site of GABAA 

receptors. As such, this may indicate a mechanistic pathway for the induction of tau pathology 

involving GABAergic receptors, based on the tau and gray matter sectors of Fig. 4d. From Fig. 

4d, the GABAA-associated benzodiazepine site is particularly involved in cognitively-significant 

interactions affecting amyloid accumulation. GABAA and GABAB receptors play a notable 

cognitive role by affecting neural activity dysfunction, and all three GABAergic targets included 

in this work are involved via tau accumulation. 

Finally, we introduced a summary metric of alterations to receptor-mediated interactions with 

reference to their normal variation in healthy ageing. Particularly, we found that GABAergic 

alterations had the largest effect on cognitive impairment in AD patients, significantly affecting 

executive function and the MMSE (Fig. 6a). Furthermore, we showed that subjects with identical 

clinical diagnosis and similar cognitive symptoms can have distinct underlying dynamics and 

receptor alteration fingerprints (Fig. 6b-c). These results highlight the clinical utility of  our 

dynamical modeling approach. By fusing in vitro receptor templates with longitudinal 

Page 31 of 76

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support (434) 964 4100

Brain
D

ow
nloaded from

 https://academ
ic.oup.com

/brain/advance-article/doi/10.1093/brain/aw
ab375/6380944 by U

SC
 Law

 user on 28 N
ovem

ber 2021



neuroimaging data and modeling the underlying dynamics of receptor-mediated neurobiological 

interactions, we are able to infer subject-specific mechanistic alterations despite the lack of 

subject-specific receptor data. As a demonstrative example, we summarized subject-specific 

alterations at the scale of receptor families. However, in a clinical context, subject-specific 

alterations at the broad scale of receptor families, the finer scale of specific receptors, or even 

specific receptor-neurobiological interactions (e.g. NMDA × CBF interactions) can be used to 

design personalized, precision treatments, which will be a topic of future work.

The whole-brain re-MCM models used cytoarchitectonically-identified cortical regions of 

interest, neglecting sub-cortical structures for which no receptor distribution data was available. 

Many neurotransmitter alterations relevant to neurodegeneration occur in these regions, notably 

dopamine deficiencies in the basal ganglia in Parkinson’s disease and early cholinergic neuronal 

death in AD. As such, including sub-cortical regions may better characterize important molecular 

pathways. Nevertheless, some effects of these phenomena are captured via  projections to 

cortical neurons that are covered by our regions of interest. Additionally, future work will aim to 

integrate CSF into the model. 

In this work, we used fractional amplitude of low-frequency fluctuation (fALFF) 31 as the 

regional measure of functional integrity. Low frequency (0.01-0.08 Hz) oscillations in the blood 

oxygenation level-dependent (BOLD) signal reflect the intensity of spontaneous activity in the 

resting brain, primarily in the default mode network 31. When the amplitude of low frequency 

fluctuations (ALFF) is normalized by the overall power spectrum of the BOLD signal to 

calculate fALFF, the effects of physiological noise are suppressed 31. However, compared to 

ALFF, fALFF significantly amplifies the signal from some non-default mode network regions 

(namely temporal-parietal regions and the precentral gyrus) 31, reducing its desired specificity to 

resting state activity. Nevertheless, fALFF shows high temporal stability over the course of fMRI 

scans 76, long-term (i.e. about 6 month) test-retest reliability 77, and high sensitivity to AD 

progression 29 30. Alternative fMRI-based metrics include regional homogeneity (ReHo) 78 or 

graph theoretic metrics such as functional connectivity degree 79. Comparing fALFF, ReHo, and 

graph-based metrics using simultaneous resting state fMRI/PET scans, Aiello et al. found 

functional connectivity degree to be the least correlated to glucose uptake, while the difference in 

correlation to glucose uptake between fALFF and ReHo was not significant 28. Furthermore, as 
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an intentional consideration to maintain model interpretability, our modeling framework avoids 

graph theoretic fMRI metrics in order to separate local, intra-region effects from inter-region 

effects due to network propagation. Although graph theoretic features can have biophysical 

interpretation, such as weighted degree representing transneural propagation or regional 

participation coefficients reflecting metabolic demands, they integrate information from multiple 

regions, which causes a leakage of network information into the intra-regional component of our 

model. Thus, as fALFF is a local fMRI measure that has been found to be at least as informative 

as ReHo in reflecting metabolic activity and validated as a measure sensitive to AD progression 

by multiple studies 29 30, all the analyses and results presented in this study correspond to fALFF 

as the measure of resting state functional integrity. It is, however, important to note that all 

available fMRI metrics have limitations in reflecting actual neuronal activity or integrity. Here, 

our choice of metric is aligned with the “neurocentric” resting-state fMRI model 80, which 

assumes that the spontaneous fluctuations in BOLD signal reflect ongoing neuronal processes. 

Multiple limitations to this model have been pointed out, including the lack of clear 

neurophysiological interpretability 80, suggesting that interpretations of resting state fMRI-based 

findings (including ours) should be taken with caution.

In addition to intra-region effects, our model considered network propagation along the 

tractography-derived white matter structural connectome. However, functional, metabolic 81 and 

vascular connectivity define complementary biophysical networks that may also contribute to the 

propagation of neurodegenerative pathology. For simplicity and to focus on local, receptor-

mediated interactions, we restricted our model to structural connectivity. The structural 

connectome is the physical substrate for the axonal propagation of pathology, and the scaffolding 

for the more abstract functional network. However, to estimate the effect of our choice of 

connectivity, we repeated our model fitting with functional connectivity, finding no significant 

change in model fit (Multi-scale interactions involving neurotransmitter receptors are important 

to explaining multifactorial brain reorganization and Supplementary Fig. S8). We attribute this 

to (i) the dominance of intra-regional effects in our model, with a relatively low contribution due 

to propagation effects and (ii) the shared information between anatomical and functional 

connectivity 48. While this work has focused on local interactions between biological processes, 

dynamical interactions also occur at a network level. For example, structural connectivity 82 and 
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the vascular network 83 are two of the factors that shape functional connectivity, and modeling 

the dynamic interactions between these networks may be a potential direction for future work.

The dynamical system modeling approach in this work relies on longitudinal and multi-modal 

neuroimaging data in order to fit personalized models. Consequently, our results would benefit 

from larger cohorts with more longitudinal samples of multi-modal data. Additionally, receptor 

map templates of patients at different stages of aging and disease progression would improve the 

characterization of salient alterations. While we have attempted to uncover causal molecular-

macroscopic mechanisms, due to the lack of personalized, longitudinal receptor maps, some 

identified biological model parameters may in fact reflect a molecular alteration (i.e. a change in 

either spatial distribution or functional alteration of a receptor) in response to a change in a 

macroscopic biological variable. As such, the exploratory interpretation of our results in relation 

to cognitive decline in AD should account for both possible causal directions between a given 

biological parameter and its target modality. For example, α1 receptors interacting with tau to 

predict functional activity represents a 3-way interaction, which may in fact reflect a causal 

direction from functional activity to adrenergic alteration. Furthermore, we have assumed a 

direct relationship between each imaging modality and an underlying neurobiological process. 

For instance, CBF in our model was derived from ASL MRI, the temporal resolution of which is 

limited by the relaxation time of blood. However, recent work on venous blood flow using 

BOLD perfusion lag-mapping has shown significant age-related changes outside the temporal 

resolution of ASL MRI 84. As new or improved imaging biomarkers are developed for AD, their 

future inclusion in the re-MCM framework would improve the coverage of potential disease-

related mechanisms.

Nevertheless, these results offer interpretable results via molecular targets and mechanisms of 

action. We find that receptor distributions mediate interactions between macroscopic biological 

factors that significantly affect cognitive decline in AD. Specifically, inter-individual differences 

in cognitive deterioration correlate with the modulation of neural activity dysfunction primarily 

by glutamatergic receptors, amyloid accumulation by GABAergic receptors, and tau buildup by 

glutamatergic, GABAergic and cholinergic receptors. Traditionally, the accumulation of 

misfolded proteins, namely amyloid and tau, has been implicated in the pathogenesis of AD. 

However, our results suggest a multi-factorial, and heterogeneous set of mechanisms involved in 
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disease.  Furthermore, our personalized, data-driven approach allows us to account for inter-

subject heterogeneity in biological pathology and clinical presentation. 

A growing body of evidence supports the critical role of neurotransmitter receptors in AD 

symptoms severity and their subsequent potential as therapeutic targets 85 86. Neurotransmitter-

based drugs such as the acetylcholinesterase inhibitor donepezil and the NMDA antagonist 

memantine have long been proposed as potential treatments for AD patients. However, these 

drugs have shown limited efficacy and adverse side effects 20 56. We propose that using 

personalized and multi-scale modeling can identify patient-specific alterations and therapeutic 

needs, by stratifying patients based on the biological parameter weights corresponding to the 

underlying, cognitively-significant mechanisms (Figs. 1c and 6). This information can then be 

used to design individually-tailored multi-factorial therapies to slow the process of cognitive 

decline in both diseased and normally-ageing individuals.
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Figure legends

Figure 1: Neurotransmitter receptor-enriched multifactorial causal modeling. a) For each 

subject with longitudinal neuroimaging data, changes between subsequent samples in each 

neuroimaging modality are decomposed into local synergistic effects due to i) the direct 

influence of all neuroimaging-quantified biological factors, ii) receptor density distributions, and 

iii) multi-scale receptor-imaging interactions, and iv) global network-mediated intra-brain 

propagation. Combining this data across (NROI=88) brain regions and multiple neuroimaging 

samples results in a multivariate regression problem to identify the subject-specific parameters 

{α}. b) At a group level, these personalized model parameters are then compared to subjects’ 

cognitive assessments (specifically, the rates of decline for 7 composite cognitive scores 

described in Materials and Methods: Cognitive scores) using a singular value decomposition 

(SVD) procedure on the cross-covariance matrix, to identify multi-scale receptor-neuroimaging 

interactions that are robustly correlated with the severity of cognitive symptoms in AD (outlined 

in Materials and Methods: Biological parameters and relationship with cognition). c) In the 

context of personalized applications, inter-subject variability in receptor-imaging interactions can 

be used as clinical “fingerprints” of molecular alterations representing different disease 

mechanisms. Patients can then receive individually-tailored treatment plans to address their 

underlying etiology, based on their specific fingerprints. For example, patients with greater 

vascular alterations may benefit more from lifestyle interventions such as physical exercise, 

whereas patients with greater receptor alterations may require neurotransmitter-based medication 

(depending on the most affected receptor). Furthermore, treatment plans can be continually 

adjusted with follow-up visits.

Figure 2: Receptor density templates and multi-scale receptor-neuroimaging interactions 

significantly improve individual longitudinal neuroimaging models. The improvement in 

neuroimaging modeling was evaluated in terms of i) including direct receptor terms and 

receptor-neuroimaging interactions in the model, and ii) using true receptor density maps 

compared to randomized, spatially permuted maps. The histograms in (a) and (b) show the 

distribution of the coefficient of determination (R2) of N=423 individual models of neuroimaging 

changes including (a) and excluding (b) receptor predictors. Subject-specific linear models fit 

neuroimaging changes reasonably well, with a significant improvement by including receptor 
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terms. This is confirmed by the F-test between subject models with and without receptor 

densities and receptor-imaging interactions (113 and 8 parameters, respectively). The proportion 

of subjects for whom the F-statistic is above the critical threshold is shown in (c). This critical 

threshold corresponds to a statistically significant (P<0.05) improvement due to the receptor 

terms in the re-MCM model, accounting for the increase in adjustable model parameters. 

Furthermore, to validate the benefit of the receptor templates over randomized null maps, re-

MCM models were fit with 1000 spatially-shuffled receptor maps for each subject. The p-value 

of the model fit (R2) using true receptor templates compared to the distribution of R2 of models 

using randomized templates was calculated for each subject. The proportion of subjects for 

whom the true receptor maps resulted in a statistically significant improvement in model fit 

(P<0.05) is shown in (d).  The results of these two analyses in (c) and (d) validate the use of 

averaged receptor templates in personalized neuroimaging models.

Figure 3: Variability of biological parameters across healthy and AD subjects. a-b) PCA-

based sources of variability in the 678 re-MCM parameters across healthy subjects (N=112) and 

AD patients (N=25), respectively. The first principal component (PC1) captured 97.3% of the 

variance across parameters in healthy subjects, and 26.2% in AD patients. The top 10 biological 

parameters and their contributions to PC1 are plotted (with their target neuroimaging models in 

the legend), highlighting the receptor-imaging interactions that characterize the main axis of 

variability in each clinical subgroup. In healthy subjects, a multi-factorial combination of 

receptor-imaging interactions affecting atrophy and CBF changes were the most variable 

parameters along PC1. Notably, for AD patients, the top parameters were direct or receptor-

mediated effects of neural activity on various (but especially tau) imaging models. c-d) To 

evaluate the relative importance of receptor- and factor-factor interactions, we then aggregated 

the importance of all direct or interaction terms involving a given predictor class (factor or 

receptor type) along PC1, for healthy subjects (c) and (d) for AD patients, respectively. Note that 

the percentage variation across all parameters is shown. As such, there is an overlap in terms 

between the two heat maps (receptor-factor interaction terms contribute to both), and they should 

be interpreted separately.
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Figure 4: Significant neurotransmitter receptor-imaging interactions underlying AD 

clinical severity. a) The latent cross-correlation components are ranked by the fraction of 

cognitive decline variance explained by re-MCM biological parameters (along with the reported 

p-values based on the permutation analysis; see Biological parameters and relationship with 

cognition). In this case, only a single latent component was significant (39.7% variance 

explained, p<0.004, FWE-corrected). b) A notable correlation (r=0.80; P<10-8) between the 

projections of statistically stable re-MCM parameters and rates of cognitive decline in the 

principal component space was observed, with the removal of an outlier subject more than 3 

median absolute deviations from the median. c) Saliences of cognitive decline to this first latent 

component, providing a relative ranking of cognitive domains. These saliences are proportional 

to the contribution of each term relative to every other term, for example showing that executive 

dysfunction is most correlated with alterations to receptor-imaging interactions in AD. d) 

Receptor-imaging pathways that are significantly correlated with cognitive decline, arranged by 

neuroimaging model and receptor type (Supplementary Table S5). The angle of each sector is 

proportional to the contribution of the corresponding parameter to explaining the variance in the 

rates of cognitive decline. The inner sectors represent the 6 neuroimaging modalities that 

together comprise each personalized re-MCM model. Within each modality, the intermediate 

sectors represent the neurotransmitter system involved, while the outer sector consists of the 

specific two-way receptor-neuroimaging interactions or direct predictor terms in the model. 

Notably, while receptors appear only as predictors in the outer sector, neuroimaging modalities 

appear both as predictors and as model outputs in the inner sectors. Thus, the relative importance 

of each neuroimaging modality to explaining cognitive differences is not fully represented by the 

angle of each inner sector.

Figure 5: Contributions of mechanistic pathways to the severity of cognitive decline in AD. 

To better visualize the importance of neuroimaging factors and neurotransmitter receptor 

systems, heatmaps of the cumulative cognitive variance explained by each predictor category in 

each neuroimaging model are shown. These variances are the percentages of total cognitive 

variance that are explained by significant biological parameters of each category via the first 

significant SVD component. As such, the rows of the heatmap on the left replicate the inner 
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sector of Fig. 4d, while the columns show the importance of each imaging modality or receptor 

family as predictors, with CBF and tau predictors explaining the most variance in cognitive 

decline.

Figure 6: Receptor alterations underlying inter-individual disease heterogeneity. a) In AD 

patients (N=25), we quantified the relative effect sizes of standardized Mahalanobis distances of 

receptor mechanisms on different cognitive domains. We also standardized the regression 

coefficients within each cognitive domain before visualizing to facilitate comparison across 

cognitive domains, and the percentage improvement in model fit (R2) due to each receptor 

system is also shown. For example, the explanation of inter-subject variability in executive 

function decline by glutamatergic, cholinergic, adrenergic, serotonergic and dopaminergic 

Mahalanobis distances is improved by 120% (i.e. more than doubled) by the inclusion of 

GABAergic Mahalanobis distance as well. b-c) We show two AD subjects, with similar 

symptoms across a variety of cognitive domains. For these subjects, we calculated the 

Mahalanobis distance to the distribution of all healthy subjects (N=112), along mechanisms 

involving each receptor family. The subjects show distinct receptor alterations based on their 

longitudinal neuroimaging changes, despite their shared designation as AD patients and similar 

cognitive profiles.  
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FIGURE 1 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 
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FIGURE 5 
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FIGURE 6 
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